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VI: −F (z) ∈ NC(z)

C

z∗v

y − z∗

Normal cone NC(z
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Many applications where F is not the derivative of some f
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Variational Inequality Formulation

F : Rn → Rn

Ideally: C ⊆ Rn – constraint set

Often: C ⊆ Rn – simple bounds

0 ∈ F (z) + NC(z)

VI generalizes many optimization problems: LP, MCP, and LCP
I For Nonlinear Equations: F (z) = 0 set C ≡ Rn

I For NCP: 0 ≤ F (z), z ≥ 0 and zTF (z) = 0 set C ≡ Rn
+

I For LCP, set F (z) = Mz + q and C ≡ Rn
+.

I For MCP (rectangular VI), set C ≡ [l , u]n.
I Example: convex optimization first-order optimality condition:

min
z∈C

f (z)⇐⇒ −∇f (z) ∈ NC(z) ⇐⇒ 0 ∈ ∇f (z) + NC(z)

I For LP, set F (z) ≡ ∇f (z) = p and C = {z | Az = a,Hz ≤ h}.
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AVI over polyhedral convex set

An affine function

F : Rn → Rn, F (z) = Mz + q, M ∈ Rn×n, q ∈ Rn

A polyhedral convex set

C = {z ∈ Rn | Az(≥,=,≤)a, l ≤ z ≤ u}, A ∈ Rm×n

Find a point z∗ ∈ C satisfying

〈F (z∗), y − z∗〉 ≥ 0, ∀y ∈ C
(⇔) 〈−F (z∗), y − z∗〉 ≤ 0, ∀y ∈ C
(⇔) − F (z∗) ∈ NC(z∗)

where
NC(z∗) = {v | 〈v , y − z∗〉 ≤ 0,∀y ∈ C}
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Variational inequalities (current state)

Find z ∈ C such that
0 ∈ F (z) +NC(z)

model vi / F, g /;
empinfo: vi F z g

Convert problem into complementarity problem by introducing
multipliers on representation of e.g. C = {z ∈ [l , u] : g(z) ≤ 0}[

F (z)−∇g(z)λ
g(z)

]
+N[l ,u]×Rm

+

C polyhedral (e.g. C = {z ∈ [l , u] : Az ≤ a} and F (z) = Mz + q[
M −AT

A 0

] [
z
λ

]
+

[
q
−a

]
+N[l ,u]×Rm

+
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Theorem

Suppose C is a polyhedral convex set and M is an L–matrix with respect
to recC which is invertible on the lineality space of C. Then exactly one of
the following occurs:

PATHAVI solves (AVI)

the following system has no solution

Mz + q ∈ (recC)D , z ∈ C. (1)

Corollary

If M is copositive–plus with respect to recC, then exactly one of the
following occurs:

PATHAVI solves (AVI)

(1) has no solution

Note also that if C is compact, then any matrix M is an L–matrix with
respect to recC. So always solved.
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Experimental results: AVI vs MCP
PATH is a solver for MCP (mixed complementarity problem).

Run PathAVI over AVI formulation.

Run PATH over AVI in MCP form (poorer theory as recC larger).
Data generation

I M is an n × n symmetric positive definite/indefinite matrix.
I A has m randomly generated bounded inequality constraints.

(m, n)
PathAVI PATH % negative

status # iterations status # iterations eigenvalues

(180,60) S 55 S 72 0
(180,60) S 45 S 306 20
(180,60) S 2 F 9616 60
(180,60) S 1 F 10981 80

(360,120) S 124 S 267 0
(360,120) S 55 S 1095 20
(360,120) S 2 F 10020 60
(360,120) S 1 F 7988 80
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Complementarity Problems via Graphs

T = NR+ = (R+ × {0})
⋃

({0} × R−)

−y ∈ T (λ) ⇐⇒ (λ,−y) ∈ T ⇐⇒ 0 ≤ λ ⊥ y ≥ 0

By approximating (smoothing) graph can generate interior point
algorithms for example yλ = ε, y , λ > 0

−F (z) ∈ NRn
+

(z) ⇐⇒ (z ,−F (z)) ∈ T n ⇐⇒ 0 ≤ z ⊥ F (z) ≥ 0
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), λ(t))

y(t) = h(x(t), λ(t))

0 ≤ y(t) ⊥ λ(t) ≥ 0
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), λ(t))

y(t) = h(x(t), λ(t))

(λ(t),−y(t)) ∈ T

Ferris (Univ. Wisconsin) PATH VI Banff, February 2014 10 / 35



Operators and Graphs (C = [−1, 1], T = NC)

zi = −1,−Fi (z) ≤ 0 or zi ∈ (−1, 1),−Fi (z) = 0 or zi = 1,−Fi (z) ≥ 0
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Complementarity Systems
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T (λ) T −1(y) (I + T )−1(y) = PT (y)

PT (y) is the projection of y onto [−1, 1]
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Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) ∈ (I + T )(z) ⇐⇒ PT (z − F (z)) = z

Use in fixed point iterations (cf projected gradient methods)
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Normal Map

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) = x and x ∈ (I + T )(z)

⇐⇒ z − F (z) = x and PT (x) = z

⇐⇒ PT (x)− F (PT (x)) = x

⇐⇒ 0 = F (PT (x)) + x − PT (x)

This is the so-called Normal Map Equation
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Key idea of algorithm T = NC
Homotopy: Easy solution for µ large, drive µ→ 0.

µr = F (πC(x(µ))) + x(µ)− πC(x(µ))

Define z(µ) = πC(x(µ)), then

µr = F (z(µ)) + x(µ)− z(µ)

x − z ∈ NC(z)

NC(z) = {−ATu − w + v}
such that Az(≥,=,≤)a ⊥ u(≥, free,≤)0

0 ≤ w ⊥ z − l ≥ 0

0 ≤ v ⊥ u − z ≥ 0
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Ray start and complementary pivoting
Solve the normal map by

1 Computing an extreme point ze ∈ C by solving Phase I.
2 Introducing a ray with a covering vector r in the interior of the

normal cone at ze .
3 Setting up an initial basis for complementary pivoting using the result

of Phase I.
4 Doing complementary pivoting until the multiplier on r becomes zero.

−(Mz + q) + µr = −ATu − w + v

Az(≥,=,≤)a ⊥ u(≥, free,≤)0

0 ≤ w ⊥ z − l ≥ 0

0 ≤ v ⊥ u − z ≥ 0

µ ≥ 0
x0 = (−3, 0), z0 = (0, 0)

x1 = z1 = (0, 0.75)

...

x2 = z2 = (3.5, 5.125)

(6, 2)

(4, 5)

(0, 6)

(6, 0)

x3 = (5, 9), z3 = (4, 5)

r = (−1,−1)
NC (z0)

−F (z0)

5r

M =

[
2 −3
−2 2

]
q =

[
−2
−5

]
r =

[
−1
−1

]

C
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Example (complementary pivoting)

x0 = (−3, 0), z0 = (0, 0)

x1 = z1 = (0, 0.75)

...

x2 = z2 = (3.5, 5.125)

(6, 2)

(4, 5)

(0, 6)

(6, 0)

x3 = (5, 9), z3 = (4, 5)

r = (−1,−1)
NC (z0)

−F (z0)

5r

M =

[
2 −3
−2 2

]
q =

[
−2
−5

]
r =

[
−1
−1

]

C
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Implementation

1 Solve Phase I over C using CPLEX.

minimize
z

0T z

subject to Az = a

l ≤ z ≤ u

I We have included slack and artificial variables.
I Thus, rank A = m.

2 Do complementary pivoting (Lemke’s method) until a feasible
solution or a secondary ray is found.
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Large scale implementation: Computing an extreme point

No extreme point exists when C has a non-zero lineality space

linC = ker

[
A
H

]
6= {0}

(H encodes bounds.) In that case, we compute a boundary point of C .

Computing a boundary point of C
I Zero out linC and compute an extreme point over reduced space.

extreme

points
C

linC =

Zero out linC

linC ′ = {0}

C ′
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Solving Phase I

If feasible region of C is not empty, then CPLEX comes with a basis triple
(B,Nl ,Nu) with B = AB nonsingular such that

B = (B1, . . . ,Bm) ⊆ {1, . . . , n} : indices of basic variables

N = {1, . . . , n}\B : indices of nonbasic variables

Nl ∩ Nu = ∅,Nl ∪ Nu = {j /∈ B : xj neither fixed nor free},
lj > −∞ for j ∈ Nl and uj < +∞ for j ∈ Nu

Nfr = {j ∈ N : zj free} and Nfx = {j ∈ N : zj fixed}.
Note that zNl

= lNl
, zNu = uNu , zNfr

= 0, zNfx
= lNfx

= uNfx
, and

zB = B−1(b − ANzN).
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Phase I result interpretation (when ∃ an extreme point)

If Nfr = ∅, then lin C = ∅ and Phase I gives us an extreme point.

z ∈ C is an extreme point if z = αz̄ + (1− α)ẑ for 0 < α < 1 and
z̄ , ẑ ∈ C implies that z = z̄ = ẑ .

z ∈ C is a BFS if {A·j : lj < zj < uj} are linearly independent.

z ∈ C is a BFS if and only if it is an extreme point.

Nfr = ∅ implies z is a BFS, hence an extreme point of C.

Existence of an extreme point implies that lin C = ∅.
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Phase I result interpretation (when @ extreme points)

If Nfr 6= ∅, then lin C 6= ∅ and Phase I gives us a boundary point.

Define z = (z̄ , ẑ) where ẑ = zNfr
. Fix ẑ = 0.

Then we have a solution to the following Phase I.

minimize
z

0T z

subject to Az = a

l ≤ z ≤ u

ẑ = 0

z̄ is a BFS in the reduced space of C where ẑ = 0, thus an extreme
point in that space.
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Initial basis setup for starting Lemke’s method

From Phase I, we have a nonsingular B

BPhaseI =

[
AAB 0
AIB −II

]
where

A : the set of indices of active constraints

I : the set of indices of inactive constraints

So that AAB is nonsingular.
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Initial basis setup for starting Lemke’s method
We need to solve a system of equations using complementary pivoting.

(Mz + q)− µr = ATu + w − v

Az − s = a

0 ≤ s ⊥ u ≥ 0

0 ≤ w ⊥ z − l ≥ 0

0 ≤ v ⊥ u − z ≥ 0

r ∈ NC(zPhaseI)

If Nfr = ∅,

BLemke =


MBB −AT

AB 0 0 0
MLB −AT

AL −IL 0 0
MUB −AT

AU 0 IU 0
AAB 0 0 0 0
AĀB 0 0 0 −IĀ

 , Bvars =


zB
uA
wL

vU
sĀ
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Initial basis setup for starting Lemke’s method

If Nfr 6= ∅,

BLemke =


MBB MBF −AT

AB 0 0 0
MLB MLF −AT

AL −IL 0 0
MUB MUF −AT

AU 0 IU 0
AAB AAF 0 0 0 0
AĀB AĀF 0 0 0 −IĀ

 , Bvars =



zB
zF
uA
wL

vU
sĀ


If M is invertible in the lineality space of C, then the above matrix is
invertible.
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Initial pivoting

Solve
MBB −AT

AB 0 0 0
MLB −AT

AL −IL 0 0
MUB −AT

AU 0 IU 0
AAB 0 0 0 0
AĀB 0 0 0 −IĀ




zB
uA
wL

vU
sĀ

 =


−qB −MBLzL −MBUzU
−qL −MLLzL −MLUzU
−qU −MULzL −MUUzU
bA − AALzL − AAUzU
bĀ − AĀLzL − AĀUzU


Note that zB and sĀ are feasible due to Phase I.

If any of uA,wL, or vU is infeasible, then make r basic by increasing µ
so that all of them become feasible.

r =

∑
i∈A

 −AT
iB

−AT
iL

−AT
iU

+
∑
i∈L

 0
−Ii
0

+
∑
i∈U

 0
0
Ii

 ∈ NC(zPhase I)
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Experimental results (LPs)

Some promising results:

Data set
# iterations (Lemke) Total elapsed time (secs)
PathAVI PATH PathAVI PATH

25fv47 3938 3202 0.608037 1.788112
bnl1 592 3230 0.084005 0.616039

pilotnov 3046 > 10,000 0.668043 > 7.456466
scfxm3 988 4129 0.140008 1.064067
wood1p 336 1325 0.216013 7.120446
woodw 1292 9878 0.652040 27.145696

Table : Solving LP (linear programming) problems using PathAVI and PATH
(netlib data sets)
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Experimental results (symmetric psd QPs)

Data set
# iterations (Lemke) Total elapsed time (secs)
PathAVI PATH PathAVI PATH

cvxqp1 M 340 1063 0.076004 0.532033
dualc8 4 39 0.008000 0.008001

qscagr25 240 868 0.020001 0.052004
qscfxm3 1072 2021 0.160009 0.504031
qship12l 1399 3246 0.524033 1.188074
cont-101 99 750 18.049127 118.071378

Table : Solving QP (quadratic programming) problems using PathAVI and PATH,
Q is symmetric and PSD

QP problems were taken from “I. Maros, Cs. Meszaros: A Repository
of Convex Quadratic Programming Problems, Optimization Methods
and Software, 1999”
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Experimental results (unsymmetric pd M)

Data set
# iterations (Lemke) Total elapsed time (secs)
PathAVI PATH PathAVI PATH

bnl1 657 > 10,000 0.136008 > 26.065629
capri 296 571 0.016001 0.100006
fit1d 1346 1839 0.156010 0.232014
scsd8 1414 2155 0.936058 3.152197

scfxm3 823 2262 0.212014 5.736358
wood1p 413 915 0.288018 1.440090

Table : Solving AVI problems using PathAVI and PATH, M is unsymmetric PD

M was randomly generated using MATLAB.
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Conclusions

Treat feasible set C and NC explicitly leads to stronger theory

Ensure feasibility C 6= ∅, and F only evaluated over C
Works when ∇F is not symmetric

Can implement theory in large scale setting and get robustness (avoid
rank deficiency in initial basis, high accuracy)

Faster

Available (subroutine or within GAMS/EMP) - requires CPLEX

Embed AVI solver in a Newton Method for VI
I Preprocessing incorporated
I Each Newton step solves an AVI
I Hot start critical
I Nonmonotone pathsearch, watchdogging (another talk)
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Splitting Methods

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Can devise Newton methods (e.g. SQP) that treat F via calculus and
T via convex analysis

Alternatively, can split F (z) = A(z) + B(z) (and possibly T also) so
we solve solve (GE) by solving a sequence of problems involving just

T1(z) = A(z) and T2(z) = B(z) + T (z)

where each of these is “simpler”

Forward-Backward splitting:

zk+1 = (I + ckT2)−1 (I − ckT1)
(
zk
)
,
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Normal manifold = {Fi + NFi
}
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C = {z |Bz ≥ b},NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b},NC (z) = {B ′v |v ≤ 0, vI(z) = 0}
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C = {z |Bz ≥ b},F (z) = Mz + q
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Cao/Ferris Path (Eaves)

Start in cell that has interior
(face is an extreme point)

Move towards a zero of
affine map in cell

Update direction when hit
boundary (pivot)

Solves or determines
infeasible if M is
copositive-plus on rec(C )

Solves 2-person bimatrix
games, 3-person games too,
but these are nonlinear

Cao/Ferris Path (Eaves) 
•  Start in cell that has 

interior (face is an 
extreme point) 

•  Move towards a zero of 
affine map in cell 

•  Update direction when 
hit boundary 

•  Solves or determines 
infeasible if M is 
copositive-plus on rec(C) 

•  Nails 2-person game 

But algorithm has exponential complexity (von Stengel et al)
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